SdkRuntime API Reference
Contents
SdkRuntime API Reference¶
This section presents the SdkRuntime Python host API reference and
associated utilities to develop kernels for the Cerebras Wafer Scale Engine.
SdkRuntime¶
Python API for SdkRuntime functions.
-
class
cerebras.sdk.runtime.sdkruntimepybind.SdkRuntime(bindir: Union[pathlib.Path, str], **kwargs)¶ Bases:
objectManages the execution of SDK programs on the Cerebras Wafer Scale Engine (WSE) or simfabric. The constructor analyzes the WSE ELFs in the
bindirand prepares the WSE or simfabric for a run. Requires CM IP address and port for WSE runs.- Parameters
bindir (
Union[pathlib.Path, str]) – Path to ELF files which is compiled bycslc. The runtime collects the I/O and fabric parameters automatically, including height, width, number of channels, width of buffers,… etc.- Keyword Arguments
cmaddr (
str) –'IP_ADDRESS:PORT'string of CM. Omit thiskwargto run on simfabric.suppress_simfab_trace (
bool) – IfTrue, suppresses generation ofsimfab_traceswhen running. Default value isFalse, i.e.,simfab_tracesare produced.simfab_numthreads (
int) – Number of threads to use if running on simfabric. Maximum value is64. Default value is5, i.e., the simulator uses 5 threads.msg_level (
str) – Message logging output level. Available output levels areDEBUG,INFO,WARNING, andERROR. Default value isWARNING.
Example:
In the following example, an
SdkRuntimerunner object is instantiated. Ifargs.cmaddris non-empty, then the kernel code will run on the WSE pointed to by that address; otherwise, the kernel code will run on simfabric. The compiled kernel code in the directoryargs.namehas exported symbolsAandBpointing to arrays on the device. After loading the code and starting the run withload()andrun(), data on the host stored indatais copied toAon the device, and thenBon the device is copied back intodataon the host.runner = SdkRuntime(args.name, cmaddr=args.cmaddr) symbol_A = runner.get_id("A") symbol_B = runner.get_id("B") runner.load() runner.run() runner.memcpy_h2d(symbol_A, data, px, py, w, h, l, streaming=False, data_type=memcpy_dtype, order=memcpy_order, nonblock=False) runner.memcpy_d2h(data, symbol_B, px, py, w, h, l, streaming=False, data_type=memcpy_dtype, order=memcpy_order, nonblock=False)
-
coord_logical_to_physical(logical_coords: int, int)¶ Convert a logical coordinate to a physical coordinate. For a program with fabric offsets (
offset_x,offset_y), and program rectangle coordinate (x,y), this function returns (offset_x + x,offset_y + y).- Parameters
logical_coords – Tuple containing logical coordinates.
- Returns
physical_coords (
(int, int)) – Tuple containing physical coordinates.
-
dump_core(corefile: str)¶ Dump the core of a simulator run, to be used for debugging with
csdb. Note that the specified name of the corefile MUST be “corefile.cs1” to use withcsdb, and this method can only be called after callingstop().- Parameters
corefile – Name of corefile. Must be “corefile.cs1” to use with
csdb.
-
get_id(symbol: str)¶ Retrieve the integer representation of an exported symbol which is exported in the kernel. Possible symbols include a data tensor or a host-callable function.
- Parameters
symbol (
str) – The exported name of the symbol.
-
is_task_done(task_handle: Task) → bool¶ Query if task
task_handleis complete- Parameters
task_handle (
Task) – Handle to a task previously launched bySdkRuntime.- Returns
task_done (
bool) –Trueif task is done, andFalseotherwise.
-
launch(symbol: str, *args, **kwargs) → Task¶ Trigger a host-callable function defined in the kernel, with type checking for arguments.
- Parameters
symbol (
str) – The exported name of the symbol corresponding to a host-callable function.- Positional Arguments
Matches the arguments of the host-callable function.
launchwill perform type checking on the arguments.- Keyword Arguments
nonblock (
bool) – Nonblocking ifTrue, blocking otherwise.- Returns
task_handle (
Task) – Handle to the task launched bylaunch.
Example:
Consider a kernel which defines a host-callable function
fn_fooby:comptime { @export_symbol(fn_foo); }
The host calls
fn_foobyrunner.launch("fn_foo", nonblock=False).
-
load()¶ Load the binaries to simfabric or WSE. It may takes 80+ seconds to load the binaries onto the WSE.
-
memcpy_d2h(dest: numpy.ndarray, src: int, px: int, py: int, w: int, h: int, elem_per_pe: int, **kwargs) → Task¶ Receive a host tensor to the device via either copy mode or streaming mode. The data is distributed into the region of interest (ROI) which is a bounding box starting at coordinate
(px, py)with widthwand heighth.- Parameters
dest (
numpy.ndarray) – A 3-D host tensorA[h][w][l], wrapped in a 1-D array according to keyword argumentorder.src (
int) – A user-defined color if keyword argumentstreaming=True, symbol of a device tensor otherwise.px (
int) –x-coordinate of start point of the ROI.py (
int) –y-coordinate of start point of the ROI.w (
int) – Width of the ROI.h (
int) – Height of the ROI.elem_per_pe (
int) – Number of elements per PE. The data type of an element is 16-bit and 32-bit only. If the tensor haskelements per PE,elt_per_peiskeven if the data type is 16-bit. If the data type is 16-bit, the user has to extend the tensor to a 32-bit one, with zero filled in the higher 16 bits.
- Keyword Arguments
streaming (
bool) – Streaming mode ifTrue, copy mode otherwise.data_type (
MemcpyDataType) – 32-bit ifMemcpyDataType.MEMCPY_32BITor 16-bit ifMemcpyDataType.MEMCPY_16BIT. Note that this argument has no effect ifstreamingisTrue, and the user must handle the data appropriately in the receiving wavelet-triggered task. Additionally, the underlying type of the tensordestmust be 32-bit. The tensor must be extended to a 32-bit one with zero filled in the higher 16 bits.order (
MemcpyOrder) – Row-major ifMemcpyOrder.ROW_MAJORor column-major ifMemcpyOrder.COL_MAJOR.nonblock (
bool) – Nonblocking ifTrue, blocking otherwise.
- Returns
task_handle (
Task) – Handle to the task launched bymemcpy_d2h.
-
memcpy_h2d(dest: int, src: numpy.ndarray, px: int, py: int, w: int, h: int, elem_per_pe: int, **kwargs) → Task¶ Send a host tensor to the device via either copy mode or streaming mode. The data is distributed into the region of interest (ROI) which is a bounding box starting at coordinate
(px, py)with widthwand heighth.- Parameters
dest (
int) – A user-defined color if keyword argumentstreaming=True, symbol of a device tensor otherwise.src (
numpy.ndarray) – A 3-D host tensorA[h][w][l], wrapped in a 1-D array according to parameterorder.px (
int) –x-coordinate of start point of the ROI.py (
int) –y-coordinate of start point of the ROI.w (
int) – Width of the ROI.h (
int) – Height of the ROI.elem_per_pe (
int) – Number of elements per PE. The data type of an element is 16-bit and 32-bit only. If the tensor haskelements per PE,elt_per_peiskeven if the data type is 16-bit. If the data type is 16-bit, the user has to extend the tensor to a 32-bit one, with zero filled in the higher 16 bits.
- Keyword Arguments
streaming (
bool) – Streaming mode ifTrue, copy mode otherwise.data_type (
MemcpyDataType) – 32-bit ifMemcpyDataType.MEMCPY_32BITor 16-bit ifMemcpyDataType.MEMCPY_16BIT. Note that this argument has no effect ifstreamingisTrue, and the user must handle the data appropriately in the receiving wavelet-triggered task. Additionally, the underlying type of the tensorsrcmust be 32-bit. The tensor must be extended to a 32-bit one with zero filled in the higher 16 bits.order (
MemcpyOrder) – Row-major ifMemcpyOrder.ROW_MAJORor column-major ifMemcpyOrder.COL_MAJOR.nonblock (
bool) – Nonblocking ifTrue, blocking otherwise.
- Returns
task_handle (
Task) – Handle to the task launched bymemcpy_h2d.
-
run()¶ Start the simfabric or WSE run and wait for commands from the host runtime.
-
stop()¶ Wait for all pending commands (data transfers and kernel function calls) to complete and then stop simfabric or WSE. After this call is complete, no new commands will be accepted for this
SdkRuntimeobject.stopmust be called to end a program. Otherwise, the runtime will emit an error.
-
class
cerebras.sdk.runtime.sdkruntimepybind.MemcpyDataType¶ Bases:
EnumSpecifies the data size for transfers using
memcpy_d2handmemcpy_h2dcopy mode.- Values
MEMCPY_16BIT
MEMCPY_32BIT
-
class
cerebras.sdk.runtime.sdkruntimepybind.MemcpyOrder¶ Bases:
EnumSpecifies mapping of data for transfers using
memcpy_d2handmemcpy_h2d.- Values
ROW_MAJOR
COL_MAJOR
-
class
cerebras.sdk.runtime.sdkruntimepybind.Task¶ Handle to a task launched by
SdkRuntime.
sdk_utils¶
Utility functions for common operations with SdkRuntime.
-
cerebras.sdk.sdk_utils.calculate_cycles(timestamp_buf: numpy.ndarray) → numpy.int64:¶ Converts values in
timestamp_bufreturned from device into a human-readable elapsed cycle count.- Parameters
timestamp_buf (
numpy.ndarray) – array returned from device containing elapsed timestamp data- Returns
elapsed_cycles (
numpy.int64) – Elapsed cycle count.
Example:
Consider the following CSL snippet which records timestamps and produces a single array to copy back to the host, to generate an elapsed cycle count:
// import time module and create timestamp buffers const timestamp = @import_module("<time>"); var tsc_end_buf = @zeros([timestamp.tsc_size_words]u16); var tsc_start_buf = @zeros([timestamp.tsc_size_words]u16); // create elapsed timer buffer and advertise to host var timer_buf = @zeros([3]f32); var ptr_timer_buf: [*]f32 = &timer_buf; timestamp.enable_tsc(); // record starting timestamp timestamp.get_timestamp(&tsc_start_buf); // perform some operation for which you want to calculate elapsed cycles // record ending timestamp timestamp.get_timestamp(&tsc_end_buf); timestamp.disable_tsc(); var lo_: u16 = 0; var hi_: u16 = 0; var word: u32 = 0; lo_ = tsc_start_buf[0]; hi_ = tsc_start_buf[1]; timer_buf[0] = @bitcast(f32, (@as(u32,hi_) << @as(u16,16)) | @as(u32, lo_) ); lo_ = tsc_start_buf[2]; hi_ = tsc_end_buf[0]; timer_buf[1] = @bitcast(f32, (@as(u32,hi_) << @as(u16,16)) | @as(u32, lo_) ); lo_ = tsc_end_buf[1]; hi_ = tsc_end_buf[2]; timer_buf[2] = @bitcast(f32, (@as(u32,hi_) << @as(u16,16)) | @as(u32, lo_) );
Then the elapsed cycles can be calculated on the host with:
# Get symbol for timer_buf on device symbol_timer_buf = runner.get_id("timer_buf") # Copy back timer_buf from all width x height PEs data = np.zeros((width*height*3, 1), dtype=np.uint32) runner.memcpy_d2h(data, symbol_timer_buf, 0, 0, width, height, 3, streaming=False, data_type=MemcpyDataType.MEMCPY_32BIT, order=MemcpyOrder.ROW_MAJOR, nonblock=False) elapsed_time_hwl = data.view(np.float32).reshape((height, width, 3)) # Print elapsed cycles for each PE for pe_x in range(width): for pe_y in range(height): cycle_cnt = sdk_utils.calculate_cycles(elapsed_time_hwl[pe_y, pe_x, :]) print("Elapsed cycles on PE ", pe_x, ", ", pe_y, ": ", cycle_cnt)
-
cerebras.sdk.sdk_utils.input_array_to_u32(arr: numpy.ndarray, sentinel: Optional[int], fast_dim_sz: int) → numpy.ndarray¶ Converts a 16-bit tensor to a 32-bit tensor of type
u32for use withmemcpy. The parametersentineldistiguishes two different extensions of 16-bit data. IfsentinelisNone, zero-pad the upper 16 bits. Ifsentinelis notNone, pack the index of the innermost dimension of the array into the upper 16-bits.- Parameters
arr (
numpy.ndarray) – A numpy array with 2 or 4 bytes per element.sentinel (
Optional[int]) – For 16-bit input data, if this parameter is notNone, pack the index of the innermost dimension into the high bits of the 32-bit wavelet. If sentinel is None, then the high bits are zeros.fast_dim_sz (
int) – Ifsentinelis notNone, specifies size of fastest-changing dimension for generating the index.
- Returns
output_view (
numpy.ndarray.view) – Numpy view intoarrwith specified numpy data type.
-
cerebras.sdk.sdk_utils.memcpy_view(arr: numpy.ndarray, datatype: numpy.dtype) → numpy.ndarray.view¶ Returns a 32, 16 or 8 bit view of a 32 bit numpy array (only the lower 16 or 8 bits of each 32 bit word in the last two cases).
- Parameters
arr (
numpy.ndarray) – A numpy array with 4 bytes per element on which the numpy view will be created.datatype (
numpy.dtype) – The numpy data type which should be used in the output view. The itemsize must be 1, 2, or 4 bytes.
- Returns
output_view (
numpy.ndarray.view) – Numpy view intoarrwith specified numpy data type.
Example:
memcpy_viewsimplifies the use of various precision data types when copying between host and device. Consider the following Python host code which creates afloat16view into a numpy array. Note that this array must be 32-bit. The user can fill the array withfloat16data, and copy it to an array on the device with CSL data typef16.x_symbol = runner.get_symbol('x') # This container array must be 32-bit x_container = np.zeros(N, dtype=np.uint32) x = sdk_utils.memcpy_view(x_container, np.float16) x.fill(0.5) runner.memcpy_h2d(x_symbol, x_container, 0, 0, 1, 1, N, streaming=False, data_type=MemcpyDataType.MEMCPY_16BIT, order=MemcpyOrder.ROW_MAJOR, nonblock=False)
debug_util¶
Utilities for parsing debug output and core files of a simulator run.
-
class
cerebras.sdk.debug.debug_util.debug_util(bindir: Union[pathlib.Path, str])¶ Bases:
objectLoads ELF files in
bindirin order to dump symbols for debugging.The user does not need to export the symbols in the kernel.
debug_utildumps the core and looks for the symbols in the ELFs. If the symbol atPx.yis not found in the corresponding ELF,debug_utilemits an error.The most common errors are either: 1) a wrong coordinate passed in
get_symbol(), or 2) a correct coordinate, but the symbol has been removed due to compiler optimization. One can usereadelfto check if the symbol exists or not. If not, the user can export the symbol in the kernel to keep the symbol in the ELF.The functionality of this class is only supported in the simulator.
Example:
from cerebras.sdk.debug.debug_util import debug_util # run the app # dirname is the path to ELFs simulator = SdkRuntime(dirname) simulator.load() simulator.run() ... simulator.stop() # retrieve symbols after the run debug_mod = debug_util(dirname) # assume the core rectangle starts at P4.1, the dimension is # width-by-height and we want to retrieve the symbol y for every PE core_offset_x = 4 core_offset_y = 1 for py in range(height): for px in range(width): t = debug_mod.get_symbol(core_offset_x+px, core_offset_y+py, 'y', np.float32) print(f"At (py, px) = {py, px}, symbol y = {t}")
-
get_symbol(col: int, row: int, symbol: str, dtype: numpy.dtype) → numpy.ndarray¶ Read the value of
symbolof given type at given PE coordinates. Note that each call to this function scans the whole fabric, so preferget_symbol_rectover calling this in a loop.- Parameters
px (
int) –x-coordinate of the PE, indexed from the northwest corner of the entire fabric (NOT the program rectangle)py (
int) –y-coordinate of the PE, indexed from the northwest corner of the entire fabric (NOT the program rectangle)symbol (
str) – Name of the symbol to be read.dtype (
numpy.dtype) – Numpy data type of values contained by symbol.
- Returns
output_arr (
numpy.ndarray) – Numpy array of output values read at symbol.
-
get_symbol_rect(rectangle: Rectangle, symbol: str, dtype: numpy.dtype) → numpy.ndarray¶ Read the value of
symbolof given type for a rectangle of PEs.- Parameters
rectangle (
Rectangle) – Rectangle specified as((col, row), (width, height)), indexed from the northwest corner of the entire fabric (NOT the program rectangle)symbol (
str) – Name of the symbol to be read.dtype (
numpy.dtype) – Numpy data type of values contained by symbol.
- Returns
output_arr (
numpy.ndarray) – Numpy array of output values read at symbol. The first two dimensions of the returned array are PE coordinates(column, row)relative to the rectangle.
-
read_trace(px: int, py: int, name: str) → list¶ Parse a CSL trace buffer with name
nameat the given PE coordinates.- Parameters
px (
int) –x-coordinate of the PE, indexed from the northwest corner of the entire fabric (NOT the program rectangle)py (
int) –y-coordinate of the PE, indexed from the northwest corner of the entire fabric (NOT the program rectangle)name (
str) – Name of the trace buffer to be read.
- Returns
trace_output (
list) – Heterogenous list of trace values.
Example:
Consider a device kernel which initializes a trace buffer with the CSL
debuglibrary and uses it to record values:const debug_mod = @import_module("<debug>", .{.key = "my_trace", .buffer_size = 100}); fn foo() void { debug_mod.trace_timestamp(); debug_mod.trace_string("Bar"); debug_mod.trace_i16(1); }
Then the trace can be read in the host code with:
trace_output = debug_mod.read_trace(4, 1, 'my_trace') print(trace_output)
If
foowas executed only once, thentrace_outputwill be a heterogenous list containing a timestamp, the string “Bar”, and the number 1.
-